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Purpose. The objective of this investigation was to yield a generalized in silico model to quantitatively
predict CYP2A6-substrates/inhibitors interactions to facilitate drug discovery.
Methods. The newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme was
employed to generate the prediction model based on the data compiled from the literature.
Results. The predictions by the PhE/SVM model are in good agreement with the experimental
observations for those molecules in the training set (n=24, r2=0.94, q2=0.85, RMSE=0.30) and the test
set (n=9, r2=0.96, RMSE=0.29). In addition, this in silico model performed equally well for those
molecules in the external validation sets, namely one set of benzene and naphthalene derivatives (n=45,
r2=0.81, RMSE=0.46) and one set of amine neurotransmitters (n=4, r2=0.98, RMSE=0.32).
Furthermore, when compared with crystal structures, the calculated results are consistent with the
published CYP2A6-substrate co-complex structure and the plasticity nature of CYP2A6 is also revealed.
Conclusions. This PhE/SVM model is an accurate and robust model and can be utilized for predicting
interactions with CYP2A6, high-throughput screening and data mining to facilitate drug discovery.
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INTRODUCTION

The polymorphic cytochrome P450 enzymes (CYPs) are
best known for their role in the metabolism of a wide range of
endogenous and xenobiotic molecules, including anticancer
drugs and a variety of procarcinogens and promutagens (1–9).
Inhibition of a single enzyme by co-administered multiple
drugs, viz. polypharmacy (10), can substantially alter the
plasma concentration of another drug, leading to adverse
drug–drug interactions and undesired drug toxicity (11). Of
all human CYP450 isozymes, CYP1A1, CYP1A2, CYP2A6,
CYP2B6, CYP2C8, CYP2C9, CYP2D6, CYP2E1, CYP3A4
and CYP3A5 are involved in oxidation of more than 90% of
environmental toxicants, drugs and carcinogens (12).

CYP2A6, which constitutes 5–10% of the total CYP in
human liver (13), can metabolize some marketed drugs
(14,15). Tegafur, for example, is metabolized to 5-FU by
CYP2A6 to exert its anticancer efficacy (16,17). Furthermore,
CYP2A6 is the primary enzyme responsible for metabolizing
nicotine to its inactive metabolite cotinine (18), making
CYP2A6 a putative smoking cessation treatment target by
inhibiting nicotine metabolism (19,20). In addition, CYP2A6

can catalyze the 7-hydroxylation of coumarin (21), which is a
toxic chemical compound found in many plants. Recent
evidences also suggest the involvement of CYP2A6 in
developing various types of cancer (22,23). Therefore, it is
of critical importance to develop an in silico model to predict
the interactions with CYP2A6 in the process of drug dis-
covery in the hope of reducing the attrition rates due to adverse
side effects as well as identifying inhibitors for smoke cessation
and chemoprevention of CYP2A6-associated cancers.

A number of CoMFA 3D-QSAR models have been
proposed (24–27) in addition to homology models (28–30)
and a docking study (31). A brief summary can be found
elsewhere (32). Nevertheless, the effects of protein flexibility,
which are a pivotal factor to precisely determine the protein–
ligand interactions, are ignored by these proposed models
(33–35). In fact, pharmacophore or CoMFA 3D-QSAR
modeling usually assumes that the target protein is rigid or
with limited flexibility. Such premise is valid only when the
target protein is relatively rigid. In other word, it undergoes
very limited conformation changes when interacting with a
variety of inhibitors or substrates, which usually is a fallible
assumption when applied to many P450 enzymes (36) since it
has been suggested that P450s can adopt multiple conforma-
tions upon binding with inhibitors or substrates (37). For
example, recent published CYP3A4–ligand co-complex crys-
tal structures indicate that the active site volume can increase
by ca. 75% and 110% upon binding with ketoconazole and
erythromycin, respectively (38), suggesting pronounced ligand-
induced conformation changes. Even when binding with ligands
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of different sizes and shapes, the target protein may markedly
change its active site volume and conformation as manifested by
the CYP2B4–ligand co-complex structures (39) and the
CYP2C5-substrate crystal structures (40). As a result, any
proposed CYP2A6 analog-based models can be only applied
to a very specific chemotype, which corresponds to a specific
protein conformation when interacting with those ligands within
the application domain (AD) of model generation.

In contrast to analog-based modeling, structure-based
modeling seems to be a better alternative. If the target
protein can adopt distinct conformations to interact with
various substrate that is common in case of P450s (vide
supra), an ensemble of protein conformations seemingly
provide a more realistic approach (41). Recently, a number
of crystal structures of CYP2A6 have been published, namely
CYP2A6 in complexes with substrate coumarin (PDB code:
1Z10) as well as inhibitors methoxsalen (PDB code: 1Z11)
(42), N,N-dimethyl(5-(pyridin-3-Yl)furan-2-Yl)methanamine
(PDB code: 2FDU), N-methyl(5-(pyridin-3-Yl)furan-2-Yl)
methanamine (PDB code: 2FDV), (5-(pyridin-3-Yl)furan-2-
Yl)methanamine (PDB code: 2FDW) and 4,4′-dipyridyl
disulfide (DPD) (PDB code: 2FDY) (43), of which it can be
found that CYP2A6 can undergo substantial conformational
change from the coumarin bound conformation to the DPD
bound conformation as illustrated by Figure 3 of the
publication by Yano et al. (43). In addition, the active site
volume of the CYP2A6-coumarin co-complex is about 327 Å3

according to the estimation by the CASTp package (44) using
a 1.4-Å probe, whereas that of the CYP2A6-DPD co-complex
is about 470 Å3 or a 44% increase in size. As a result, it can
be asserted that CYP2A6 can adopt more distinct
conformations to interact with a variety of ligands. To
accommodate the plasticity of CYP2A6 for more accurate
predictions of interactions with CYP2A6, lengthy molecular
dynamics (MD) calculations should be carried out.
Nevertheless, CYP2A6 and any other CYP450 isozymes are
heme proteins, viz. transitional-metal-containing systems,
which can only be modeled by quantum mechanics or QM/
MM methods (45) that has been further explained in detail
elsewhere in the case of CYP450s (46). Consequently, such
computationally expensive QM or QM/MM MD calculations
make such protein conformation sampling extremely difficult
in some cases, if not absolutely infeasible.

As a result, any analog- or structure-based modeling
methods that fail to take into account protein plasticity will
give rise to fallible predictions or substantial deviations when
the target protein is highly flexible. Recently, a novel scheme
has been proposed, in which a panel of plausible pharmaco-
phore hypothesis candidates were assembled to construct a
pharmacophore ensemble (PhE), which, in turn, was treated
as input for regression analysis via support vector machines
(SVM) (47). Each pharmacophore member in the PhE
represents a protein conformation or a number of protein
conformations with closed spatial arrangements. Unlike any
other analog-based modeling methods, this PhE/SVM scheme
can take into account protein plasticity, which is of critical
importance to be addressed when the target protein can
adopt significantly various conformations to interact structur-
ally diverse ligands (48), by using PhE in place of protein
conformation ensemble. More importantly, this PhE/SVM has
been applied to study the liability of human ether-a-go-go-

related gene (47) and CYP2B6-substrate interactions (49),
both of which are highly flexible proteins. The aim of this
study was to derive an in silico model based on PhE/SVM
scheme to predict interactions with human CYP2A6.

MATERIALS AND METHODS

Data Compilation

Data enlisted in this investigation were compiled from
different literature sources (50–54). IC50 values were taken
for those compounds, which were measured by inhibition of
coumarin 7-hydroxylation since it is considered to be well
characterized (55) and, most importantly, it provided the
largest quantity of consistent data records. Furthermore,
chemical structures were cautiously examined and only
compounds with defined stereochemistry were assembled.
All molecules enrolled in this study, their corresponding
biological activities and references to the literature are listed
in Table I.

Table I. Selected Compounds for this Study, Their IC50 (μM) Values
or Average Values if Applicable and References

Molecules IC50 (μM) Refs

β-Nicotyrine 2.20 (53)
4-Hydroxy-1-(3-pyridyl)-1-butanone 4.20 (50)
2-(p-Tolyl)-ethylamine 4.90 (52)
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone 5.00 (50)
4-Oxo-1-(3-pyridyl)-1-butanone 6.80 (50)
4-Methoxybenzaldehyde 7.10 (52)
4-Methylbenzaldehyde 13.00 (52)
(−)-Menthone oxime 24.61 (54)
7-Methylcoumarin 30.00 (51)
(+)-Menthol 37.77 (54)
2-Phenylethylamine 39.00 (52)
Butylcyclohexane 43.00 (51)
Indan 50.00 (51)
(+)-Neomenthol 52.77 (54)
2-Indanone 57.00 (51)
Thymol 67.49 (54)
(−)-Menthone 67.54 (54)
(−)-Menthol 70.49 (54)
Butylbenzene 75.00 (51)
Biphenyl 82.00 (51)
Benzaldehyde 120.00 (52)
(R)-(+)-pulegone 129.50 (54)
(S)-(−)-pulegone 139.40 (54)
2,3-Dihydrobenzofuran 180.00 (51)
2-Coumarone 300.00 (51)
2-Benzoxazolinone 870.00 (51)
4,6-Dimethyl-α-pyrone 1,600.00 (51)
ɛ-Caprolactone 16,000.00 (51)
4-Methoxy-2(5H)-furanone 18,000.00 (51)
2H-pyran-2-one 22,000.00 (51)
σ-Valerolactone 29,000.00 (51)
5,6-Dihydro-2H-pyran-2-one 33,000.00 (51)
γ-Butyrolactone 350,000.00 (51)
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Conformational Generations

Conformational ensembles of each molecule were gen-
erated by the MacroModel package (Schrödinger, Portland,
OR) using mixed Monte Carlo multiple minimum (MCMM)
(56)/low mode (57) and the hydration effect was taken into
account using the GB/SA algorithm (58). Truncated-Newton
conjugated gradient method (TNCG) was employed for
energy minimization with the selection of MMFFs force field
(59). The solvation effect was taken into account by using
water as solvent with a constant dielectric constant. Addi-
tionally, the number of selected unique structures was
restricted to 255 within the energy window of 20 Kcal/mol
(or 83.7 KJ/mol) above the global minimum energy confor-
mation in order to comply with the constraints imposed by
Catalyst (Accelrys, San Diego, CA) for automatic pharmaco-
phore generation.

Training Set/Test Set Selection

The sample selection for the training set plays a critical
role for determining the quality of a prediction model. For
instance, there is a high possibility to generate over-fitted or
over-trained models if there is any redundancy present in the

samples. Theoretically, an ideal training set should consist of
all classes of chemical structure to be studied and all ranges of
biological activities. In addition, any molecules to be pre-
dicted should be similar to the molecules in the training set.
In other word, the predictions are interpolation per se. In this
investigation, the training set for pharmacophore calculations
was chosen according to the Catalyst manual.

Twenty-four molecules with biological activities spanning
over about 6 orders of magnitude were enlisted from the
compound collections to construct the training set for
automatic pharmacophore generation and regression. The
other nine molecules from the compound collections with
biological activities spanning over about 5 orders of magni-
tude served as the test set to validate those generate
pharmacophore hypotheses. Tables II and III list compounds
selected for the training set and the test set, respectively, and
their corresponding negative logarithm IC50 values, namely
pIC50 since Catalyst carries out all of the calculations and
analyses in a logarithm scale.

Pharmacophore Development

Generated conformations of those molecules in the
training set were imported into Catalyst along with their

Table II. Experimentally Observed pIC50 Values of Compounds in the Training Set, Corresponding Predicted Values by Hypo A, Hypo B,
Hypo C and SVM model, Residual (Δ) and Associated Statistic Numbers (Correlation Coefficient) r2, RMSE, Maximum Residual, Average
Residual, Standard Deviation of Residual and (Cross-Validation Coefficient) q2

Molecules

Obs. Hypo A Hypo B Hypo C SVM model

pIC50 pIC50 Δ pIC50 Δ pIC50 Δ pIC50 Δ

β-Nicotyrine 5.66 4.96 −0.70 5.92 0.26 5.25 −0.41 5.77 0.11
4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanone 5.30 5.37 0.07 5.08 −0.22 5.17 −0.13 5.17 −0.13
4-Oxo-1-(3-pyridyl)-1-butanone 5.17 5.96 0.79 5.62 0.45 4.74 −0.43 5.23 0.06
4-Methylbenzaldehyde 4.89 5.03 0.14 4.70 −0.19 4.92 0.03 4.87 −0.02
(−)-Menthone oxime 4.61 3.82 −0.79 4.49 −0.12 4.07 −0.54 4.30 −0.31
7-Methylcoumarin 4.52 5.05 0.53 4.04 −0.48 4.92 0.40 4.42 −0.10
(+)-Menthol 4.42 3.80 −0.62 4.42 −0.00 3.82 −0.60 4.15 −0.27
Butylcyclohexane 4.37 3.85 −0.52 3.21 −1.16 2.74 −1.63 3.52 −0.85
Indan 4.30 4.85 0.55 4.55 0.25 4.96 0.66 4.78 0.48
2-Indanone 4.24 3.62 −0.62 4.26 0.02 4.36 0.12 4.26 0.02
Thymol 4.17 4.41 0.24 4.26 0.09 4.01 −0.16 4.30 0.13
(−)-Menthone 4.17 3.82 −0.35 4.14 −0.03 3.85 −0.32 4.05 −0.12
(−)-Menthol 4.15 3.80 −0.35 3.96 −0.19 4.01 −0.14 4.02 −0.13
Butylbenzene 4.12 4.74 0.62 4.35 0.23 4.46 0.34 4.52 0.40
Biphenyl 4.09 4.07 −0.02 4.11 0.02 3.77 −0.32 4.08 0.01
Benzaldehyde 3.92 3.62 −0.30 4.68 0.76 3.51 −0.41 4.03 0.11
R-(+)-pulegone 3.89 3.82 −0.07 3.85 −0.04 4.10 0.21 3.99 0.10
S-(−)-pulegone 3.86 3.82 −0.04 3.85 −0.01 4.12 0.26 3.99 0.13
2-Benzoxazolinone 3.06 3.62 0.56 4.55 1.49 3.21 0.15 3.84 0.78
4,6-Dimethyl-α-pyrone 2.80 3.00 0.20 2.68 −0.12 2.66 −0.14 2.90 0.10
4-Methoxy-2(5H)-furanone 1.74 1.74 0.00 1.72 −0.02 2.64 0.90 1.65 −0.09
2H-pyran-2-one 1.66 1.72 0.06 1.68 0.02 1.89 0.23 1.61 −0.05
5,6-Dihydro-2H-pyran-2-one 1.48 1.68 0.20 1.70 0.22 1.92 0.44 1.58 0.10
γ-Butyrolactone 0.46 1.08 0.64 0.89 0.43 0.41 −0.05 0.88 0.42
r2 0.87 0.87 0.85 0.94
RMSE 0.45 0.46 0.50 0.30
Max 0.79 1.49 1.63 0.85
Average 0.37 0.28 0.37 0.21
SD 0.26 0.37 0.34 0.22
q2 0.85
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corresponding IC50 values. The HypoGen module was used to
develop chemical feature-based pharmacophore hypotheses
using hydrogen-bond acceptor (HBA), hydrogen-bond ac-
ceptor lipid (HBA lipid), hydrogen bond donor (HBD),
hydrophobic (HP) and ring aromatic (RA) as feature
candidates. The minimum and maximum numbers of each
selected chemical feature and total features were varied in
order to find better performance. In addition, to maximize
the hypothesis diversity, assorted combinations of variable
weight and variable tolerance were employed. Both fitting
algorithms, namely the “best” fit and the “fast” fit, were also
tested. The generated pharmacophore models were then used
to predict the IC50 values of those compounds in the test set.

The cost of a generated hypothesis and that of its
associated null hypothesis were taken from the log file, and
the difference between these two values was calculated to
survey the statistic quality of a hypothesis. In addition,
statistical analyses, namely the correlation coefficient (r2),
root-mean-square error (RMSE), maximum residual, average
residual and standard deviation of residual between the
observed and predicted IC50 values, were computed for
both training set and test set. Only those pharmacophore
models that showed good prediction accuracy and excellent
statistic performance in both sets were eligible to construct
the PhE.

SVM Calculations

The predicted pIC50 values of those compounds in the
training set by those pharmacophore hypotheses in the PhE
were treated as input for regression calculations using the
LIBSVM package (60), which consists of two routines for
regression, namely svm-train and svm-predict, to develop an
SVM model, based on the input data and options, and to
predict the test samples using a model previously built with
svm-train, respectively. Two regression modes, namely ɛ-SVR
and ν-SVR, were also tested. The frequently used kernel
radial basis function (RBF) was used for its simplicity and
prominent performance (61). The SVR models were gener-

ated based on various runtime parameters, which were
carried out using an in-house perl script to systemically scan
through those runtime parameters, namely cost C, the width
of the RBF kernel γ and ɛ and ν in cases of ɛ-SVR and ν-
SVR, respectively. In addition, the generated SVM models
were further validated by a 10-fold cross-validation instead of
the most popular leave-one-out one since the former has been
proven to perform better than the latter (62).

External Validation

It can be argued that a high value of cross-validated q2

does not suffice to warrant the predictivity of a theoretical
model (63). It may be necessary to further evaluate the real
performance of a prediction model by an external test set,
which is not involved in model development and,
consequently, exerts no effect on the prediction model. As a
result, it is highly possible that a prediction model is
statistically authentic if the model has high values of q2 and
r2 calculated by the cross-validation and external validation,
respectively.

Therefore, the generated PhE/SVM model was further
challenged with a group of benzene and naphthalene
derivatives and a series of neurotransmitters and steroids
published by Rahnasto et al. (26) and Higashi et al. (64),
respectively. These molecules were selected as external test
sets 1 and 2, respectively, and the experimental IC50 values
measured by the inhibition of coumarin 7-hydroxylation were
adopted to be consistent with the compound selections in the
training set and the test set.

Comparisons with Crystal Structures

To further elucidate the authenticity of constructed
models, a number of molecules were selected to compare
with recently published crystal structures (42,43) (vide supra).
Those selected molecules were first mapped onto the
pharmacophore hypotheses and the matched conformations
were then extracted and rigidly aligned with the ligands in the

Table III. Experimentally Observed pIC50 Values of Compounds in the Test Set, Corresponding Predicted Values by Hypo A, Hypo B, Hypo
C and SVMModel, Residual (Δ) and Associated Statistic Numbers (Correlation Coefficient) r2, RMSE, Maximum Residual, Average Residual
and Standard Deviation of Residual

Molecules

Obs. Hypo A Hypo B Hypo C SVM model

pIC50 pIC50 Δ pIC50 Δ pIC50 Δ pIC50 Δ

4-Hydroxy-1-(3-pyridyl)-1-butanone 5.38 6.00 0.62 5.34 −0.04 5.92 0.54 5.51 0.13
2-(p-tolyl)-ethylamine 5.31 4.92 −0.39 5.12 −0.19 5.60 0.29 5.43 0.12
4-Methoxybenzaldehyde 5.15 5.07 −0.08 5.70 0.55 4.92 −0.23 5.43 0.28
2-Phenylethylamine 4.41 5.10 0.69 4.49 0.08 5.37 0.96 4.84 0.43
R-Neomenthol 4.28 3.80 −0.48 3.47 −0.81 3.80 −0.48 3.72 −0.56
2,3-Dihydrobenzofuran 3.74 4.82 1.08 3.19 −0.55 4.85 1.11 3.77 0.03
2-Coumarone 3.52 3.62 0.10 4.64 1.12 3.30 −0.22 3.90 0.38
ɛ-Caprolactone 1.80 1.92 0.12 1.74 −0.06 2.10 0.30 1.80 0.00
σ-Valerolactone 1.54 1.72 0.18 1.96 0.42 1.96 0.42 1.69 0.15
r2 0.88 0.84 0.87 0.96
RMSE 0.52 0.55 0.59 0.29
Max 1.08 1.12 1.11 0.56
Average 0.42 0.42 0.51 0.23
SD 0.34 0.37 0.32 0.19
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co-complex structures. Finally, the aligned structures along
with the associated pharmacophore models were placed into
the corresponding co-complex structures.

RESULTS AND DISCUSSION

PhE

Of all generated pharmacophore hypotheses using dif-
ferent combinations of chemical features and runtime con-
ditions, three models, designated by Hypo A, Hypo B and
Hypo C, were enlisted to construct the PhE based on the
prediction accuracy of individual molecule and the statistical
analyses in the training set and the test set as well as the cost
differences as shown in Tables II, III and IV, respectively.
These three candidate models in the ensemble consist of the
same chemical features, namely one HBA lipid, two HPs and
one RA. Tables V, VI and VII summarize the characteristics
of these three hypotheses, including weights, tolerances,
three-dimensional coordinates and interfeature distances.

These three pharmacophore hypotheses are spatially
arranged differently despite the fact that they possess the
same chemical features as demonstrated by Fig. 1. The
distance between two HP groups in Hypo A, for instance, is
6.274 Å, whereas that slightly decreases to 6.010 Å in Hypo B

and increases to 6.288 Å in Hypo C. The lengths between the
chemical features HP and RA are 1.256, 1.465 and 1.472 Å in
Hypo A, Hypo B and Hypo C, respectively. More pro-
nounced variations in interfeature distance can be found from
the distance between the chemical features HP and HBA
lipid, which show the maximum by Hypo B with a value of
5.632 Å, followed by Hypo Awith a value of 2.901 Å and the
minimum by Hypo C with a value of 2.640 Å. The spatial
discrepancies among these three models can also be illustrat-
ed by two angles centered at either one of HPs and
connecting to the other HP and RA or HBA lipid, varying
from 77.1° and 112.2° in Hypo A to 75.7° and 50.5° in Hypo B
and 81.1° and 56.3° in Hypo C.

These three models in the PhE differ not only in the
relative topological relationships but also in the absolute
coordinates in the space as illustrated by the superposition of
these three models illustrated in Fig. 2. As shown in Fig. 3,
such differences can be further depicted by fitting these three
models into 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone
(NNK). Thus, NNK adopts different conformations to
generate the best fit with these models. The chemical feature
RA, for example, is mapped onto the pyridine moiety for all
of these three models. Conversely, the chemical feature HBA
lipid matches the nitroso functional group in Hypo A and
Hypo C, whereas it coincides with the carbonyl functional
group in Hypo B. The observation of such discrepancy
becomes even more pronounced by the overlay of these
three conformations as demonstrated in part D of Fig. 3,
suggesting that all of these models adopted various con-
formations or orientations to exert the biological activities
and a PhE is needed to address the conformational plasticity
as a result.

The maximum error of Hypo C in the training set was
yielded from the prediction of butylcyclohexane with a
residual of 1.63, whereas Hypo A and Hypo B gave rise to
residuals of 0.52 and 1.16, respectively (Table II). The
prediction of 4-oxo-1-(3-pyridyl)-1-butanone by Hypo A

Table IV. Costs of Returned Hypotheses and Null Hypotheses and
the Cost Differences (Δ) Between Returned and Null Hypotheses for
the Pharmacophore Models Hypo A, Hypo B, and Hypo C

Cost Hypo A Hypo B Hypo C

Null hypothesis 282.79 282.79 282.79
Returned hypothesis 145.20 155.53 150.59
Δ 137.59 127.26 132.20

Table V. Weights, Tolerances, Three-Dimensional Coordinates of Chemical Features and Interfeature Distances of Pharmaco-
phore Model Hypo A

HBA lipid Hydrophobic Hydrophobic Ring aromatic

Weights 1.48 2.12 2.12 4.02 

Tolerances 1.30 1.90 1.30 1.30 1.90 1.30

X 1.95 0.62 −0.91 −3.15 −3.86 −3.08

Y 0.46 −2.13 0.45 6.21 5.47 3.04

Z −2.43 −1.73 −1.97 −0.82 −0.09 1.48

HBA lipid

3.0

Hydrophobic 2.9 3.0

Hydrophobic 7.8 9.2 6.3

Ring aromatic 8.0 9.0 6.1 1.3

6.9 7.1 4.8 3.9 3.0
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deviated most from the observed value with a residual of 0.79,
whereas Hypo B and Hypo C only showed deviations of 0.45
and 0.42, respectively. The largest deviation by Hypo B was
resulted from the prediction of 2-benzoxazolinone with a
value of 1.49, whose evaluation errors were merely 0.56 and
0.15 by Hypo A and Hypo C, respectively. Similarly, Hypo A
perfectly predicted 4-methoxy-2(5H)-furanone with no error,
Hypo B only generated a residual of 0.02, whereas Hypo C
yielded a significant deviation of 0.90. In fact, such prediction
discrepancies for molecules in the training set among these
three models in the PhE render the fact that no single
pharmacophore hypothesis performed better than the others

for all molecules in the training set; nor did one perform
worse than the others. Generally, it can be found from
Table II that these three hypotheses in the PhE gave rise to
very close prediction trend, resulting in high values of
correlation coefficient r2 (Table II), and it can be further
demonstrated by the scatter plot of observed vs. the predicted
pIC50 values as illustrated in Fig. 4.

Furthermore, statistical parameters root-mean-square
error, maximal residual, average residual and standard
deviation of residuals in the training set (Table II) suggest
that these three models in the PhE functioned equally well in
the training set. More importantly, it is highly possible that

Table VI. Weights, Tolerances, Three-dimensional Coordinates of Chemical Features and Interfeature Distances of Pharmacophore
Model Hypo B

HBA lipid Hydrophobic Hydrophobic Ring aromatic

Weights 1.63 2.33 3.03 4.42 

Tolerances 1.30 2.20 1.45 1.45 1.75 1.30

X 1.25 1.45 −2.66 −2.66 −1.29 −0.26

Y 2.96 5.75 −0.50 −0.50 0.01 −0.82

 0.01 1.11 0.44 0.44 0.34 −2.35

HBA lipid

3.0

Hydrophobic  5.6 6.7

Hydrophobic 5.0 7.7 6.0

Ring aromatic 3.7 6.5 5.8 1.5

4.8 7.6 5.7 3.7 3.0

  

Table VII. Weights, Tolerances, Three-Dimensional Coordinates of Chemical Features and Interfeature Distances of
Pharmacophore Model Hypo C

HBA lipid Hydrophobic Hydrophobic Ring aromatic

Weights 1.64 1.64 2.34 4.44 

Tolerances 1.60 2.20 1.60 1.60 1.60 1.60

X −1.69 −1.77 0.76 −1.40 −0.58 1.90

Y −2.19 −4.34 −3.18 0.26 −0.70 0.98

Z 3.61 5.71 3.72 −1.08 −1.84 −2.07

HBA lipid

3.0

Hydrophobic  2.6 3.4

Hydrophobic 5.3 8.2 6.3

Ring aromatic 5.8 8.5 6.2 1.5

7.4 10.1 7.2 3.5 3.0
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these three models are statistically authentic models since the
cost differences between the null hypothesis and returned
hypotheses are 137.59, 127.26 and 132.20 for Hypo A, Hypo
B and Hypo C, respectively (Table IV), all of which are
substantially larger than 60 that is the cost difference required
to reach the level of a more than 90% chance to show the
statistical correlation between the hypothesis and the input
data as described in the Catalyst's manual.

Various levels of performance decline can be found when
applied these three models in the PhE to predict those
molecules in the test set in terms of the statistical evaluations,
namely RMSE, average residual and residual standard
deviation as shown in Table III. Nevertheless, the maximum
deviations calculated by Hypo B and Hypo C slightly
decreased from 1.49 and 1.63 in the training set to 1.12 and
1.11 in the test set, respectively. Prediction discrepancies
among these three pharmacophore models found in the
training set can also be found in the test set. The prediction
of 2-coumarone by Hypo B, for example, resulted in the
maximal error of 1.12, whereas Hypo A and Hypo C only
generated errors of 0.10 and 0.22, respectively. The maximal

deviations by Hypo A and Hypo C were yielded from the
predictions of 2,3-dihydrobenzofuran, which was only 0.55
produced by Hypo B. As a result, discrepancies in the
prediction trends by these three models can also be found in
the test set as displayed in Fig. 5.

In general, the predictions by Hypo A, Hypo B and
Hypo C are, in general, in agreement with observed values
for molecules in both the training set and the test set as shown
in Tables II and III. In fact, they show very similar
performance in both training set and test set by comparing
their r2 values (Tables II and III). The differences in the
parameter r2 calculated by Hypo A, Hypo B and Hypo C
between the training set and the test set were only +0.01,
−0.03 and +0.02, respectively. Such negligible differences in r2

suggest that they were statistically well-trained models in
contrast to an over-trained model, which otherwise will give
rise to a considerable r2 difference between both sets.
Therefore, it can be asserted that Hypo A, Hypo B and Hypo
C are qualified candidates for the PhE development based on
the their performances in the training set and the test set as
well as their statistical evaluations as mentioned above.

Fig. 1. Generated pharmacophore models A Hypo A, B Hypo B and C Hypo C, consisting of lipid hydrogen-bond acceptor (green),
hydrophobic (light blue) and ring aromatic (orange) chemical features. The interfeature distances and angles among features, depicted in white,
are measured in Ångstroms and degrees, respectively.
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SVM

The optimal SVM, whose input parameters are summa-
rized in Table VIII, was chosen from various runtime
conditions based on the prediction calculations of those
molecules in the training set and 10-fold cross-validation as
given in Table II. The prediction results for those molecules
in the test set are listed in Table III. It can be found from
Table II that the SVM model yielded smaller residuals than
the maximal deviations produced by those hypotheses in the
PhE for any given molecule in the training set. The SVM
model even gave rise to the smallest residuals in some cases.
The prediction of 5,6-dihydro-2H-pyran-2-one by SVM, for
instance, resulted in an error of 0.10, whereas Hypo A, Hypo
B and Hypo C yielded deviations of 0.20, 0.22 and 0.44,
respectively. As a result, most of points predicted by SVM
generally lie on or are very closer to the regression line with
slope of 1.00, i.e. the ideal regression line, as compared with
Hypo A, Hypo B and Hypo C as shown in Fig. 4.

Furthermore, all of the statistical parameters, shown in
Table II, support the fact that the SVM model performed
better than any of pharmacophore models in the PhE in the
training set except maximal residuals, which were 0.79 by
Hypo A and 0.85 by SVM. Nevertheless, of 24 molecules in
the training set, Hypo A produced 11 predictions, whose
residuals were more than 0.50, whereas Hypo B, Hypo C and
SVM only yielded 3, 5 and 2, respectively. The 10-fold cross-
validation of the SVM model produced the correlation
coefficient q2 of 0.85 as compared with an r2 of 0.94 for the
training set as indicated in Table II. The inconsiderable
discrepancy between both two parameters signifies the fact
that the SVM model shows highly statistical significance
between the theoretical model and the input data and, more

importantly, it is highly possible that this SVM model is an
authentic model.

Unlike all models in the PhE, the SVM model showed
various levels of performance improvement when applied to
the test set as indicated by all statistical parameters (Tables II
and III) except average residuals, which were 0.21 in the
training set and 0.23 in the test set. Consequently, the SVM
model performed better than any of pharmacophore model in
the PhE in the test set as asserted by all of statistical
estimations shown in Table III. In addition, the SVM model
only gave rise to one prediction, which deviated from the
experimental value by more than 0.50, in the test set, whereas
Hypo A, Hypo B and Hypo C generated 3, 4 and 3,
respectively, resulting in smaller distances from the ideal
prediction line as illustrated in Fig. 5.

It is of practical importance to evaluate an in silico model
by taking into consideration its performance in both the
training set and the test set. As a result, it can be concluded
that the SVM model outperformed Hypo A, Hypo B and
Hypo C based on the prediction and statistical performances
in both sets mentioned above presumably because of the fact
that the PhE/SVM approach cannot only take into account
the protein conformational flexibility and but also gives rise
to the more realistic final model that, nevertheless, cannot be
achieved by traditional ligand-based modeling schemes.

External Validation

The prediction results of those molecules in the external
validation sets 1 and 2 as well as their associated statistical
numbers are listed in Table IX. There were 48 molecules,
whose inhibition activities of CYP2A6 were investigated by
Rahnasto et al. (26), consisting of a variety of chemical
structures, namely naphthalenes, quinolines, tetralones and
non-planar compounds. Three molecules were excluded from
the selection due to their uncertain biological activities. The
remaining 45 molecules were selected to constitute the
external validation set 1. It can be observed from Fig. 6, in
which all of molecules in all sets were projected into the
chemical space, spanned by three principal components, that
some of molecules in the external validation set 1 are
surrounded by molecules in the training set, whereas most
of molecules in the external validation set 1 lie outside the
boundary of the training set molecules, suggesting that some
of molecules in the external validation set 1 are covered
within the AD of model generation, whereas the others are
located outside the AD. As a result, the predictions of those
molecules within and outside the AD will be interpolation
and extrapolation in nature, respectively. In addition, the
biological activities, spanning over about 6 orders of magni-
tude, imply the diverse nature of these 45 molecules in the
external validation set 1. Consequently, the structural and
biological versatility renders the fact those molecules in the
external validation set 1 serve good samples to verify the
predictivity of the generated PhE/SVM model.

It can be observed from Table IX that the predictions by
PhE/SVM are generally in good agreement with observed
values for most of molecules in the external validation set 1 as
manifested by the fact that, of those 45 molecules in the
external validation set 1, there were 35 molecules, whose
absolute residuals calculated by the PhE/SVM model were

Fig. 2. Superposition of three pharmacophore models Hypo A, Hypo
B and Hypo C, denoted in green, red and blue, respectively.
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Fig. 4. Observed pIC50 vs. the pIC50 predicted by Hypo A, Hypo B,
Hypo C and SVM model for those molecules in the training set and
the ideal regression line.

Fig. 3. Pharmacophore models A Hypo A, B Hypo B and C Hypo C fitted to 4-(methylnitrosamino)-1-(3-
pyridyl)-1-butanone and D overlay of these three models, which are color-coded by green, blue and red.
The chemical features are described in Fig. 1.

Fig. 5. Observed pIC50 vs. the pIC50 predicted by Hypo A, Hypo B,
Hypo C and SVM model for those molecules in the test set and the
ideal regression line.
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less than 0.50. The maximum prediction error in the external
validation set 1 was 1.47, yielded by the estimation of
cotinine, which slightly increased from the training set,
implying that the PhE/SVM performance slightly declined
from the training set to the external validation set 1. Such
deterioration can be plausibly attributed to the fact that most
of the predictions were extrapolation in nature as mentioned
above. Nevertheless, the insignificant differences in r2,
RMSE, average residual and standard deviation of residual
between both sets assert the fact that this PhE/SVM model
can maintain similar level of predictivity when applied to the
interpolation and extrapolation samples, which is of critical
importance to a prediction model.

Of 18 compounds studied by Higashi et al. (64),
histamine, serotonin, dopamine and tryptamine were selected
as the external validation set 2 since they were only
molecules, whose biological activities were well characterized.
These molecules were more serious challenges to the
generated PhE/SVM model than all of the molecules in the
test set and the external validation set 1 since they are
endogenous compounds per se in contrast to all molecules in
the other sample sets designated in this study, which
completely are xenobiotics. The dissimilarity of these 4
compounds in the external test set 2 from the others can be
illustrated by Fig. 6, in which it can be found that the
distances between those molecules in the external validation
set 2 and any other molecules are considerably far, and, in
addition, they are completely outside the AD of model
generation, suggesting that those 4 endogenous molecules
are outliers with respect to those xenobiotic molecules.

When applied to the external validation set 2, the PhE/
SVM model performed extraordinarily well as shown in
Table IX, giving rise to deviations from the experimental
values within 0.54 log units and an average residual of 0.27. In
addition, the predictions and experimental values were
correlated extremely well with an r2 value of 0.98. It can be
asserted that the PhE/SVM model demonstrated excellent
performance in the external validation set 2 based on the
prediction accuracy as well as the statistical evaluations. More
importantly, the PhE/SVM is very insensitive to the outliers,
suggesting that it is very robust (65), which is an important
fact to a prediction model.

Thus, it is plausible to conclude, based on the perfor-
mance in both external validation sets, that this in silico
model based on the PhE/SVM scheme is an accurate and
robust model to predict the interactions between CYP2A6
and substrates/inhibitors. Furthermore, this prediction model
can be applied to a variety of chemical structures with high
levels of prediction accuracy, which can be attributed to the
fact that this PhE/SVM model can take into account the
protein conformational flexibility while interacting with

Table VIII. Optimal Runtime Parameters for the SVM Model

Parameter Value

SVM type ɛ-SVR
Kernel type Radial basis function
γ 0.001
Cost 100000
ɛ 0.1

Table IX. Experimentally Observed pIC50 Values of Compounds in
the External Validation Sets, Corresponding Predicted Values by the
PhE/SVM Model, Residual (Δ) and Associated Statistic Numbers
(Correlation Coefficient) r2, RMSE, Maximum Residual, Average
Residual and Standard Deviation of Residual

Molecules

Obs. Pred.

pIC50 pIC50 Δ

External validation set 1a

1,2-Dicloronaphthalene 4.82 5.04 0.22
1,2-Dimethylnaphthalene 4.59 4.69 0.10
1,3-Dimethylnaphthalene 5.08 5.11 0.03
1,4-Dichloronaphthalene 5.60 5.15 −0.45
1,5-Dichloronaphthalene 5.60 5.31 −0.29
1,5-Dimethylnaphthalene 4.51 4.73 0.22
1,6-Dimethylnaphthalene 3.89 4.45 0.56
1,7-Dimethylnaphthalene 4.51 4.58 0.07
1-Chloronaphthalene 4.74 4.73 −0.01
1-Methylisoquinoline 4.22 4.47 0.25
1-Methylnaphthalene 4.47 4.68 0.21
1-Naphthol 3.89 4.17 0.28
2,4-Dimethylquinoline 3.08 3.06 −0.02
2,6-Dimethylnaphthalene 5.00 5.57 0.57
2,6-Dimethylquinoline 3.55 3.72 0.17
2,7-Dimethylnaphthalene 5.77 6.22 0.45
2,7-Dimethylquinoline 3.40 4.58 1.18
2-Bromonaphthalene 6.26 6.48 0.22
2-Chlorobiphenyl 4.44 4.61 0.17
2-Chloronaphthalene 5.27 5.84 0.57
2-Ethylnaphthalene 4.92 4.98 0.06
2-Fluoronaphthalene 6.17 4.99 −1.18
2-Methoxynaphthalene 4.21 4.21 0.00
2-Methylnaphthalene 5.62 6.16 0.54
2-Naphthol 3.85 3.99 0.13
3-Methylisoquinoline 4.60 4.74 0.13
3-Methylquinoline 3.70 4.18 0.48
4-Chlorobiphenyl 3.82 3.91 0.09
6,7-Dimethoxy-2-tetralone 2.70 2.73 0.03
7-Methyl-2-naphthaldehyde 5.17 5.55 0.38
Dibromo-p-xylol 4.23 4.37 0.14
Dichloro-p-xylol 4.77 4.47 −0.30
Naphthalene 4.60 4.71 0.11
Nicotine 3.24 3.83 0.59
Phenanthrene 4.01 4.19 0.18
Quinaldine 3.72 4.12 0.40
α-Tetralone 4.28 4.36 0.08
β-Tetralone 4.68 4.89 0.21
Cotinine 1.46 2.93 1.47
Benzaldehyde 3.92 4.01 0.09
4-Methylbenzaldehyde 4.88 4.87 −0.01
4-Methoxybenzaldehyde 5.15 5.53 0.38
amphetamine 3.50 4.39 0.89
2-(p-tolyl)-ethylamine 5.30 5.82 0.52
2-Phenylethylamine 4.41 4.56 0.15
r2 0.81
RMSE 0.46
Max 1.47
Average 0.32
SD 0.42

External validation set 2b

Histamine 3.22 3.46 0.24
Serotonin 3.40 3.94 0.54
Tryptamine 6.10 6.34 0.24
Dopamine 3.93 3.99 0.06
r2 0.98
RMSE 0.32
Max 0.54
Average 0.27
SD 0.20

aRahnasto et al. (26)
bHigashi et al. (64)
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structurally diverse small molecules that, in turn, is of critical
importance and yet often neglected by most of the analogue-
based modeling methods. Consequently, it is plausible to
expect that this PhE/SVM model will show similar prediction
performance when applied to other molecules of different
chemotypes.

Comparisons with Crystal Structures

7-Methylcoumarin was chosen to compare with bound
coumarin in the co-complex structures since, of 33 molecules
enlisted in this study and 6 substrates in the published co-
complex structures, 7-methylcoumarin and coumarin are the
most similar molecules with only difference in methyl group.
The mapped conformation of 7-methylcoumarin by Hypo C
was employed since the prediction by Hypo C generated the
smallest deviation from the observed value as compared with
that by Hypo A and Hypo C. As a result, it is plausible to
assume that 7-methylcoumarin will adopt the same confor-
mation or a very similar one to this one to interact with
CYP2A6 enzyme.

It can be observed from Fig. 7, which displays the overlay
of 7-methylcoumarin and CYP2A6-coumarin co-complex,
that 7-methylcoumarin was perfectly aligned with coumarin,
which presumably can be attributed to the fact that both
molecules are very rigid and flat, resulting in very limited
conformational flexibility. The two hydrophobic chemical
features found in 7-methylcoumarin presumably are due to
the interactions with residues of Phe-107, Gly-301, Thr-305
and Phe-480, which also can be confirmed by the analysis
using the LigPlot program (66) that those four residues form
hydrophobic contacts with coumarin. The measured distance
between carbonyl oxygen of 7-methylcoumarin and one of
amine hydrogens of Asn-297 is 2.532 Å as illustrated in Fig. 7,
suggesting the formation of a hydrogen bond between two
moieties as observed in the crystal structure (42), which is
completely consistent with the derived Hypo C.

It was proposed that the π–π stacking interaction took
place between the aromatic ring of Phe-107 and that of
coumarin (42). Nevertheless, the estimated distance between
the aromatic ring of 7-methylcoumarin and that of Phe-107 is
7.16 Å, whereas that is only 6.51 Å between the aromatic ring

Fig. 6. Molecular distribution for those samples in the training set (filled
triangle), the test set (filled inverted triangle), the external validation set 1
(open circle) and the external validation set 2 (open diamond) in the
chemical space spanned by three principal components.

Fig. 7. The alignment of 7-methylcoumarin with coumarin in the CYP2A6-substrate co-complex structure
(PDB code: 1Z10). The residues that constitute the active site and coumarin are denoted in green. The
chemical features are depicted in Fig. 1.
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of 7-methylcoumarin and that of Phe-480, suggesting that the
π–π stacking is most likely due to the interaction between 7-
methylcoumarin and Phe-480 instead of Phe-107. In addition,
it can be observed from Fig. 7 that the ring aromatic chemical
feature of Hypo C points to Phe-480 instead of Phe107.

In general, the geometry of the four-feature pharmaco-
phore model Hypo C was found to be consistent with
structural analyses of CYP2A6-coumarin crystal as men-
tioned above, suggesting that Hypo C is a plausible model
to describe the interactions between 7-methylcoumarin and
CYP2A6.

To further investigate how the CYP2A6 will adopt
conformation change in order to accommodate more bulky
molecules, NNK was placed in the active site of DPD-
CYP2A6 co-complex since NNK is the most bulky and
flexible molecule among 33 molecules included in this study
and the DPD-CYP2A6 co-complex has the largest active site
among all published structures. Unlike 7-methylcoumarin,
which was compared with bound ligand by selecting the
conformation matched by Hypo C as mentioned above, the
mapped conformation of NNK by Hypo A was selected since
the prediction by Hypo A yielded the lowest error (Table II).
The variation in pharmacophore hypothesis selection by both
molecules suggests that CYP2A6 enzyme can adopt different
conformations to interact with structurally different sub-
strates. Since NNK and DPD are structurally distinct, the
selected NNK conformation was rigidly aligned against bound
DPD using the Cerius2 package (Accelrys, San Diego, CA).
Fig. 8 displays the overlay of NNK and bound DPD in the
enzyme-inhibitor co-complex. It can be observed that NNK is
highly flexible that is in consistent with general postulate that
not all of CYP2A6 substrates are planar (67). Most
importantly, it can be observed that the molecular volume
of aligned NNK collides with Thr305 and heme of CYP2A6
as shown in Fig. 8, rendering the fact that the active site of
CYP2A6-DPD co-complex is too small for NNK despite the
fact that the binding pocket of CYP2A6-DPD co-complex is
the largest among all published structures. As a result,
CYP2A6 protein has to change its conformation by

expanding its active site in order to accommodate more
bulky NNK, giving rise to a new conformation with more
spacious binding pocket, which is possible to be explored by
time-consuming crystallization or computationally expensive
QM MD calculations and the ensemble of protein
conformation can be further extended accordingly so that
the interactions between ligand and CYP2A6 can be more
accurately modeled. The analog-based PhE/SVM scheme, on
the other hand, can accurately predict the interactions
between structurally distinct ligands and CYP2A6 by taking
into account the protein plasticity using PhE without
spending a lot of computational time.

CONCLUSION

An in silico model, based on the combination of
pharmacophore ensemble, which takes into account protein
plasticity while interacting with structurally distinct small
molecules, and support vector machine, which provides
robust and fast regression, has been built to accurately
predict the interactions between CYP2A6 and those mole-
cules in the training set, test set and external validation sets,
with excellent predictability and statistical significance. As a
result, it can be asserted, based on the facts mentioned above,
that this PhE/SVM model can be employed as a tool for
predictions and a device for high-throughput screening and
data mining to facilitate drug discovery by reducing the
attrition rates due to adverse side effects as well as by
designing small molecule therapies for smoke cessation and
chemoprevention of CYP2A6-associated cancers.
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